Starting Out with Programming Logic and Design                                                           17

Lab 1:  Input, Processing, and Output

This lab accompanies Chapter 2 of Starting Out with Programming Logic & Design.
Name:  ___________________________

Lab 1.1 – Algorithms
[image: image17.emf]lab1-1.wmv

This lab requires you to think about the steps that take place in a program by writing algorithms.  Read the following program prior to completing the lab.  
Write a program that will take in basic information from a student, including student name, degree name, number of credits taken so far, and the total number of credits required in the degree program.  The program will then calculate how many credits are needed to graduate.  Display should include the student name, the degree name, and credits left to graduate.

Step 1:  Examine the following algorithm. (Reference: Designing a Program, page 31).
1. Get the student name.

2. Get the degree program name.

3. Subtract the number of credits taken so far from the required credits for the degree.

4. Get the number of credits required for the degree program.

5. Get the number of credits the student has taken so far.

6. Display the input information in Step 1 and 2. 

7. Display the calculated information.  

Step 2:  What logic error do you spot and how would you fix it?

Step 3:  What steps require user interaction (Ex: user must type in some input)?
[image: image18.emf]lab1-2.wmv

Lab 1.2 – Pseudocode
This lab requires you to think about the steps that take place in a program by writing pseudocode.  Read the following program prior to completing the lab.  

Write a program that will take in basic information from a student, including student name, degree name, number of credits taken so far, and the total number of credits required in the degree program.  The program will then calculate how many credits are needed to graduate.  The data displayed should include the student name, the degree name, and credits left to graduate.

Step 1:  This program is most easily solved using just five variables.  Identify potential problems with the following variables declared in the pseudocode. Assume that the college has the ability to offer half credits.  (Reference: Variable Names, pages 43-44).
	Variable Name
	Problem (Yes or No)
	If Yes, what’s wrong?

	Declare Real creditsTaken
	
	

	Declare Real credits Degree
	
	

	Declare Integer creditsLeft
	
	

	Declare Real studentName
	
	

	Declare String degreeName
	
	


Step 2:  Complete the pseudocode by writing the three missing lines. (Reference: Prompting the User, page 46).
Display “Enter student name. ”

Display “Enter the degree name. ”

Input degreeName

Input creditsDegree
Display “Enter the number of credits taken so far. ”

Step 3:  What is wrong with the following calculation? (Reference: Variable Assignment and Calculations, page 47).
creditsLeft = creditsTaken – creditsDegree
Step 4:  Write the exact output you would expect from the following line of code if the user of the program enters “Bill Jones”.  (Reference: Displaying Items, page 44 – 45).
Display “The student’s name is “, studentName
Step 5:  Write the exact output you would expect from the following line of code if the user of the program enters a degree that is 63 credits in total and they have taken 40 credits.  (Reference: Displaying Items, page 44 – 45).
Display “This program requires “, creditsDegree, “ credits and they have taken “,  creditsTaken, “ so far.”
Step 6:  Complete the following pseudocode to solve the programming problem.
1. //This program takes in student information and calculates

2. //how many credits the student has left before graduation.

3. //Information is then displayed to the screen.

4. //Declare variables
5. Declare Real creditsTaken
6. //Ask for user input

7. Display “Enter student name. ”
8. Input studentName
9. //Calculate remaining credits

10. //Display student name, degree program, and credits left. 
11. Display “The student’s name is “, studentName
[image: image19.emf]Terminal Symbol

Used for Start and Stop

Process Symbol

Used for Calculations

Data Symbol

Used for Input and Display

On Page 

Connector

Flow Lines

Lab 1.3 – Flowcharts
This lab requires you to think about the steps that take place in a program by designing a flowchart.  While designing flowcharts can be done with paper and pencil, one mistake often requires a lot of erasing.  Therefore, a flowcharting application such as Flowgorithm should be used.  This lab will give you a brief overview of Flowgorithm.  Read the following program description prior to starting the lab.  

Write a program that will take in basic information from a student, including student name, degree name, number of credits taken so far, and the total number of credits required in the degree program.  The program will then calculate how many credits are needed to graduate.  Display should include the student name, the degree name, and credits left to graduate.

When the flowchart is run, the following text and information should be displayed in the console (given that “Bill Jones” and “Computer Programming” are inputted and credits taken and required would result in 39 credits remaining):
[image: image1.png]£ Console S
S p>MIlEEBE

Enter student name.

ﬁ Enter the degree name.

| Eter e numoer of et reurea o ree.

ﬁ Enter the number of credifs taken so far.

ﬁ ‘Student name is Bill Jones
ﬁ The degree program is Computer Programming
ﬁ Credis leftto graduation is 39

‘ ‘ ‘ o Enter

|





Step 1:  Start Flowgorithm.  Notice the Flowgorithm screen.  This window is your primary tool for creating a flowchart.  Prior to adding symbols, save your document by clicking on File and then Save as.  Select your location and save the file as Lab1_3.  The .fprg file extension will be added automatically.


[image: image2]
Step 2:  Notice the Console screen.  When the flowchart is run this window is used to show all input and output in “Chat Bubbles”.  Each time the flowchart is run all past data will be removed.  You can also click the eraser icon (last icon on the right) to clear the console.    
[image: image3.png]Sone =
QApMIlE EHES

d

H o Enter ‘





Step 3:  Return to the Flowgorithm screen to begin adding symbols into your flowchart.  Your flowchart should follow the pseudocode in Lab 1-2, Step 6.  Add the first comment by clicking the arrow between Main and End and selecting Comment.   Then double click the Comment rectangle and enter the comment text as below.

[image: image4.png]Comment Properties

Comments dont affect how your program runs. They

are used to document information about the program.

Enter any text. You donit have to use double quotes

This program takes in

dent information and -
calculates how many credits the student has left
before graduation.
the screen.

Informa

on is then displayed





Click the OK button.

Step 4:  Add the next comment as you did in step 3. 

Step 5:  Add a Declare rectangle for the first variable by clicking the arrow between the second Comment and the End symbol, then click the Declare rectangle option, and then, in the flowchart, double click the Declare rectangle and specify the Declare statement as below.  Click the OK button to add the declare to the flowchart.
[image: image5.png]Declare Properties

-

ate variabl
e data while

Variable Name:

creditaTaken

Type

=





Below is a start to how the flowchart should look.  
[image: image6.png]‘This program takes in student
information and calculates how
many credits the student has left
before graduation. Information is
then displayed to the screen

Declare variables

Real creditsTaken





Step 6:  Add the 4 other needed Declare rectangles and comments from the pseudocode.  
Step 7: The next step in your flowchart should be to ask for user input. Each piece of user supplied information will require an output operation (to prompt the user to supply the information) and an input operation (to read in the information and assign it to a variable).  Insert an Output symbol before the End symbol in the flowchart.  Then double click and specify the prompt text to display as follows:  

[image: image7.png]Output Properties

An Output

ion and then

Enter an expression below

“Enter student name.





Step 8:  Add an Input symbol after the Output symbol and specify the studentName variable as the target for the entered data as follows:

[image: image8.png]Input Properties

An Input Statement reads a value from the
keyboard and stores the result in a variable.

Enter a variable name below:

dentiName





Step 9:   Continue the step 7 and 8 directions for all the inputted data statements

Step 10:  The next step in your flowchart is to process any calculations that exist.  
Add an Assign symbol before the End symbol.  Double click on the Assign symbol to enter your code.  In the Variable box, put the name of the storage variable.  In the Expression box, put the formula.  Below is how it should look.
[image: image9.png]Assignment Properties =]

n and then

Variable: Expression

creditslest = creditsDegree - creditsTaken -

=]





Step 11:  The next step in the flowchart is to display the requested output to the screen.  Add an Output symbol before the End symbol.  Double click on the Output symbol to enter the code and in the Expression box, type "Student name is " & studentName  and click the OK button.  Below is how it should look.
[image: image10.png]o

This program takes in student
information and calculates how
many credits the student has left
before graduation. Information is
then displayed to the screen

Declare variables

Real creditsTaken

Real creditsDegree

Real creditsLeft

String studentName

v

String degreeName

Asks for user input

f Output “Entor student name. * /.

Input studentName

Calculates remaining credits

v

creditsLeft = creditsDegree -
creditsTaken

Display Student Name, Degree
Program, and Credits Left

I

“Student name is * &
studentName.





Step 12:  Add the remaining Output statements to reflect the appropriate requested output information.

Step 13:  Once the flowchart is complete, click on Run.   Your Master Console window should show output similar to the image at the beginning of Lab1_3. 

Step 14:  The final step is to send your finished flowchart.
SEND .FPRG FILE TO RJANSON@FSCJ.EDU
Lab 1.4 – Java Code
[image: image20.png]File Edit Program Tools Help

EwlPMIIE & /88 @& F

< >

The file was saved at 3:16 PM.





This lab requires you to translate your work in the pseudocode and flowchart to actual code using Java.  Read the following program description prior to completing the lab.  

Write a program that will take in basic information from a student, including student name, degree name, number of credits taken so far, and the total number of credits required in the degree program.  The program will then calculate how many credits are needed to graduate.  Display should include the student name, the degree name, and credits left to graduate.
The following is the external design of the program:


[image: image11]
Step 1:  Examine the following line of code.  What do you expect as output to the screen?
System.out.print(“Enter student name. “);
Step 2:  Examine the following line of code.  What type of value do you expect the user of the program to enter?
creditsDegree = keyboard.nextInt();
Step 3:  Select with an X which function should be used to take in input from the user.  The data type of the variable determines whether to use the function next( ) or nextDouble( ).




      next( )                               nextDouble( )
studentName


​​​​​​​​​​​​____________                   ____________                  

creditsDegree


____________                   ____________

creditsLeft


____________                   ____________
Step 4:  If the user of the program entered Bill Jones as studentName, what do you expect the output to the screen to be when the following line of code processes?
System.out.println(“The student’s name is” + studentName);
Step 5:  Examine the following line of code.  If the program requires 63 credits, and the student has 20 left, what do you expect the output to the screen to be?

System.out.println(“The program requires ” + creditsDegree + “ credits and they have taken ” + creditsTaken + “ credits so far.”);
Step 6:  Start Notepad++.  Prior to entering code, save your file by clicking on File and then Save As.  Select your location and save this file as Lab1_4.java.  Be sure to include the .java extension.  
Step 7:  Code should start with documentation.  Document the first few lines of your program to include your name, the date, and a brief description of what the program does.  Each line that you want to comment out must begin with //.  For example:

//Sally Smith

//January 15

//This program ...

Step 8:  After documentation, enter the following code into your program.

import java.io.*;
import java.util.Scanner;
public class Lab1_4 {

public static void main(String[] args) throws IOException {
Scanner keyboard = new Scanner(System.in); 


}

}

Step 9: Before the }, add the following code to prompt the user and retrieve the student name.



System.out.print("Enter student name. ");
String studentName = keyboard.next();
Save the file. In the command prompt compile the program.  If you get a syntax error, you must fix it before you are able to run your program.  Review syntax error message and then fix it. 

[image: image12.png]‘ommand Prompt - java Lab1 4

f : \Classes\COP1002\Gadd i
Labl-4. java:8: error: ’{

s>javac Labl-4. java
’ expected
public class Labl-4

1 error





Once all errors have been fixed, run and observe the program in action.  

[image: image13.png]& Command Prompt

f :\Classes\COP1002\Gaddis> javac Labl_4.

f :\Classes\COP1002\Gaddis> java Labl_4
Enter student name. Bill

f :\Classes\COP1000\Gaddis>





Step 10:  Repeat Step 9, but change the statement so that it asks the user to enter their degree name.  It is up to you whether you want to compile each time you code a line or two.  But it is recommended for beginning programmers so they can immediately identify syntax errors.  Also, one syntax error at a time is easier to solve than many all at once.  
Step 11:  Next, you should write the code that will ask the user how many credits are required in the degree with the following prompt text: Enter the number of credits required for the degree.  Then read in the value.  Since it is a numeric value this can be done using the nextDouble() function.  
Step 12:  Repeat Step 11 but change the statement so that it asks the user to enter the number of credits they have taken so far.

Step 13:  Next, add the calculation.  This is done very simply with the following code.

double creditsLeft = creditsDegree – creditsTaken;
Step 14:  Add the following line of code to your program.
System.out.println(The student's name is  + studentName);
Step 15:  If you have not tested your program in a while, now is a good time to try it out.  Go to the command prompt and compile the program and observe what happens.  SYNTAX ERROR!
[image: image14.png]f :\Classes\COP100@\Gaddis» javac Labl_4. java
bl_4.java:30: error: ’)’ expected
System.out.println(The student’s name is

_4.java:30@: error: unclosed character literal
System.out.printIn(The student’s name is

_4.java:3@: error: ’;’ expected
System.out.printIn(The student’s name is

_4.java:30: error: not a statement
System.out.println(The student’s name is
. java:3@: error: ’;’ expected
System.out.println(The student’s name is

S errors
f :\Classes\COP1022\Gaddis>

studentName);
studentName);
studentName);

studentName);

studentName);
S





Step 16:  While nothing stands out as being wrong in Step 14, notice that the text is not enclosed in double quotes and that one mistake can generate many error messages.  Change the line to the following.
System.out.println(“The student's name is”  + studentName);
Step 17:  Finish your code by displaying the rest of the data and text.  Your final output (given the following inputted values) should look like the following.
Enter student name. Bill
Enter the degree name. Programming
Enter the number of credits required for the degree. 63
Enter the number of credits taken so far. 24
The student's name is Bill 

The degree name is Programming

There are 39.0 credits left until graduation.
When run it should look like the following.

[image: image15.png]& Command Prompt

f :\Classes\COP1002\Gaddis> javac Labl_4. java

f : \Classes\COP100@\Gaddis> java Labl_4

Enter student name. Bill

Enter the degree name. Programming

Enter the number of credits required for the degree.
Enter the number of credits taken so far

The student’s name 15 Bill
The degree_pame is ramming
There are 39 left untx? graduation.

f :\Classes\COP1000\Gaddis>





Step 18:  When your code is complete and runs properly, send the Lab1_4.java file as an email attachment to rjanson@fscj.edu
Lab 1.5 – Graded Assg 1 – Team Average

Write the Algorithm, Pseudocode, and Flowgorithm Flowchart, and Java code for the following programming problem.

Team Average  

A college wants you to write a program for them that will calculate the average number of wins for their football team over the past five years.  The user of the program should be able to enter the number of wins each year.  The program will calculate the average number of wins during that five year period and display that information to the screen.  

External Design


The input prompts and output of the program should look like the following:

[image: image16.png]& Command Prompt

f :\Classes\COP10@2\Gaddis> javac Labl_5. java

f :\Classes\COP1002\Gaddis> java_Labl_5
Enter number of wi for year 1. 1
Enter number of for year 2. 2
Enter number for year 3. 3

Enter number for year 4. 4
Enter number of wi for year 5. S

The average number of wins each year over the last five years 3.0
f :\Classes\COP1022\Gaddis>





The Algorithm

Type algorithm here (and send this document) or create a separate document file and enter algorithm in it.  Send file with algorithm to rjanson@fscj.edu
The Pseudocode

Type pseudocode here (and send this document) or create a separate document file and enter pseudocode in it. Send file with pseudocode to rjanson@fscj.edu
The Flowchart

Send .fprg file to rjanson@fscj.edu
The Java Code

Send Lab1_5.java file to rjanson@fscj.edu
Critical Review





An algorithm is a set of well-designed logical steps that must take place in order to solve a problem.





The flow the algorithm takes is sequential.  For example, before you process calculations, all data needed should be retrieved. 





Help Video:  Double click the file to view video


� EMBED Package  ���





Critical Review





Pseudocode is an informal language that has no syntax rules and is not meant to be compiled or executed. 





The flow the program takes is sequential.  For example, before you ask for input, you should display what information you want from the user.





//Comments are done by putting two forward slashes before the lines you want to //document.  Comments are used to explain code.





Variables are named storage locations.





"Declare" is the keyword used before naming a variable.  Data types are: Real for decimal numbers, Integer for whole numbers, and String for a series of characters.  





Follow the rules for naming variables:  (1) must be one word, no spaces, (2) usually no punctuation characters, only letters and numbers, and (3) name cannot start with a number.





"Display" is the keyword used to print something to the screen.  Any information needed to be displayed to the user should be put inside quotation marks such as Display “This is how you print something to the screen”.  When using display to print both a string and the value of a variable, a comma or plus sign is used, such as Display “Here is the average”, average or Display “Here is the average” + average.  You may use either method but most only use one throughout the design.





"Input" is the keyword used to get the user to enter data.  The data value entered by the user will be placed in the variable that follows the keyword input such as Input variableName.





Standard math operators are used, such as + - * / MOD ^.  Operators can be combined in one calculation, but it is wise to group expressions together using parentheses.  Remember the order of operations.  Some examples are sale = price – discount and average = (test1 + test2 + test3) / 3.


 


Help Video:  Double click the file to view video


� EMBED Package  ���





Critical Review





A flowchart is a diagram that graphically depicts the steps that take place in a program.  Symbols are used to depict the various steps that need to happen within a program.  Flow lines are used between the symbols to indicate the flow of the program.  





Ovals are used as terminal symbols, which indicate a start and stop to a program.





Parallelograms, the data symbol, are used for input and display statements.  





Rectangles, the process symbol, are used for calculations and variable declarations.  





On page connectors are used to link a flowchart that continues on the same page.  The connecting system starts with the letter A, whereas A would appear in the two connectors that show the flow.





The statements inside the data and the process symbols can be written similarly to the statements used in pseudocode.  





� EMBED Visio.Drawing.11  ���











Critical Review





Comments in Java are preceded by //.  





Input of data into a program requires the creation of a Scanner object and variable.  This will require an import statement at the beginning of the program as follows:   import java.util.Scanner; 





Creating the Scanner variable can be done as follows: Scanner keyboard;


Creating the Scanner object can be done as follows: new Scanner(System.in);





However, to get the Scanner object assigned to the variable, it is easier do it all in one statement as follows:  Scanner keyboard = new Scanner(System.in);





Once the Scanner object has been created and assigned to the variable keyboard, use the appropriate next function to get data into the program.  The next function converts the text input to the correct data type which can then be assigned to a variable of the correct type.  This is written as an equation such as stringVariable = keyboard.next();





Input of numeric values into a variable is done using the nextInteger() or nextDouble() functions.  The method of input is similar to string input.  For example, intVariable = keyboard.nextInt(); or doubleVariable = keyboard.nextDouble();





Equations are written similarly to the method used in pseudocode.  For example total = apples + oranges.  Complex formulas should use parentheses to group processes.  In addition, if input values are taken in as integers, but will be used to calculate a decimal value, they must be converted to double values.  For example double average = (test1 + test2) / 2.





To display information to the screen, the System.out.println() or System.out.print() commands are used with the string to be display, which is written within double quotation marks.  If the value of a variable needs to displayed after the string, a plus sign separates the two.  For example, System.out.println (“The average is” + average);  











[image: image21.png]Enter student name. Xxxxxxxx

Enter the degree name. Xxxxxxxxx
Enter the number of credits required for the degree. ###
Enter the number of credits taken so far. ###

The student's name is XXXXXXXX
The degree program is XXXXXXXXXX
There are ### credits left until graduation.



_1318145138/Lab1-1.wmv

_1318169920/Lab1-2.wmv

_1258311120.vsd
Terminal Symbol
Used for Start and Stop


Process Symbol
Used for Calculations


Data Symbol
Used for Input and Display


On Page Connector


Flow Lines



