Chapter 1

Stephen Milczanowski

- Chemistry is the study of matter and energy.
- Phases of matter: solid, liquid and gas.
- Matter is composed of atoms. An atom is one of the 100+ elements.
- Each element has a name and a chemical symbol.
- The symbol is 1 to 2 letters. The first is capitalized, the second, is there is one, is lowercase. Example: F, Cl

Periodic table

- Columns are called groups. Elements in the same group have similar properties.
- Rows are called periods.

- Groups (vertical)
- $1 \mathrm{~A}=$ alkali metals
- $\quad 2 \mathrm{~A}=$ alkaline earth metals
- $\quad 7 \mathrm{~A}=$ halogens
- $8 \mathrm{~A}=$ noble gases
- Periodic table shows Symbol, mass number and atomic number.

Matter

- Element: A substance made of atoms of one element.
- Compound: A substance made of atoms of 2 or more elements chemically bound together. Example: H2O
- Mixture: 2 or more elements and /or compounds not chemically bound together.
Example: saline solution
- Homogeneous
- Heterogeneous

Energy

- Energy is the ability to do work.
- Types of Energy
- kinetic: energy of motion
- potential: stored energy
- Forms of Energy

Scientific Method

- Observation
- Hypothesis: A possible explanation of the observation.
- Experiment: A test of the hypothesis.
- Theory: A hypothesis supported by experimentation.

Scientific Method

Properties

- Extensive: does matter how much you have.

Example: mass, volume, length

- Intensive: does not matter how much you have. Example color, temperature, density.

Measurement

- $\mathrm{N}+\mathrm{mM}+\mathrm{uU}$ unit
- N is the last labeled mark
- M is the value of the unlabeled marks and m is the number of unlabeled marks
- U is the value of some imaginary marks and is always $\mathrm{M} / 10$, u is the number of unlabeled marks.

Precision and Accuracy

- Precision: how closely individual measurements agree with each other. In the case of the eraser they should be within $+/-$ 0.01 cm of each other.
- Accuracy: closeness to correct value.

Usually, precise measurements are also accurate.

Significant figures
 An indication of precision

- All non-zero numbers are significant
- Captive zeros are always significant. (203)
- Leading zeros are never significant. (0.032)
- Tailing zeros are significant only if there is a decimal point. (124,000 or 0.3100)
The number of significant figures in a measurement tells something about the instrument that took the measurement.

Examples

- 203,000,000
- 0.03590
- 127.0
- 300
- 300.
- 0.03

Scientific notation

For very large or very small numbers

- Form: 1-10 x 10 power
- Large numbers: Move decimal point to the left. 275 is 2.75×100 which is 2.75×102 150000000 miles is 1.5×108 miles
- Small numbers: Move decimal point to the left, power of 10 becomes negative.
0.0000007823 cm becomes $7.823 \times 10-7 \mathrm{~cm}$

Using your calculator

-Multiply:
6.02×10^{23}
$\begin{array}{r}6.3 \times 10^{-5} \\ \hline\end{array}$

Plug in
6.02 EE 23 X

2.3 EE (-) 5 Enter

The Metric System

- Base Units: Meter (m), Liter(L), Gram (g)
-The scales of these units are adjusted in powers of ten and are described by prefixes.
- 1000 is kilo (k)
- $1 / 100$ is centi (c)
- $1 / 1000$ is milli (m)

Three metric to English Conversions
o $453.6 \mathrm{~g}=1$ pound
o 1.06 quarts $=1$ liter
o $2.54 \mathrm{~cm}=1$ inch

The Factor Label Method

- Based on the fact if the numerator (top \#)
and the denominator (bottom \#) of a fraction are equal, than the value of the fraction is equal to 1 .
- Based on the fact that multiplying a measurement by one will not change the value of that measurement.

How many eggs are there in three dozen?

- 12 eggs $=1$ dozen

3 dozen $\times \frac{12 \text { eggs }}{\text { dozen }}=36$ eggs

Conversion factors

- Each equality can be used in to ways:
- 12 inches $=1 \mathrm{ft}$
- To convert inches to ft

$$
1=\frac{1 \text { foot }}{12 \text { inches }}
$$

- Or to convert ft to inches

$$
1=\frac{12 \text { inches }}{1 \text { foot }}
$$

Convert 72.0 inches to feet using the Factor Label

 method.The steps:
\cdot Find the starting point $\quad 72.0$ inches $=$? feet

- Collect your conversions.
-Come up with a plan
-Apply your plan.

$$
72.0 \text { inches } x \frac{1 \text { foot }}{12 \text { inches }}=6.00 \text { feet }
$$

A newborn baby is measured at 0.47 m long. How many inches is she?

Reporting your Answer to the Correct Number of Significant Figures

- When multiplying or dividing, report your answer to the number of significant figures of the least precisely measured measurement.
- When adding or subtracting, report your answer to the decimal place of the least precisely measured measurement.
- Some numbers have an infinite number of significant figures and so just do not play a role. Counted numbers or defined numbers are such numbers.

A train is traveling at $\mathbf{4 5 . 0} \mathbf{~ m i l e s} / \mathrm{hour}$ and has to make a trip of 100 miles. How many minutes will it take to get there?

Density
-D=M/V

$$
D=\frac{\text { mass }}{\text { volume }}=\frac{M}{V}
$$

-Density is a conversion factor that inter-converts mass and volume.
-The density of water is $1.00 \mathrm{~g} / \mathrm{ml}$

Densities of some things

Gasoline	$0.66 \mathrm{~g} / \mathrm{ml}$
Oil	$0.92 \mathrm{~g} / \mathrm{ml}$
water	$1.00 \mathrm{~g} / \mathrm{ml}$
Aluminum	$2.70 \mathrm{~g} / \mathrm{ml}$
Lead	$11.3 \mathrm{~g} / \mathrm{ml}$
Mercury	$13.6 \mathrm{~g} / \mathrm{ml}$

Density

-Rank water, ether and carbon tetrachloride in terms of density.

Temperature Conversions

$F=\frac{9}{5} C+32 \quad \mathrm{~K}=\mathrm{C}+273$
If body temperature is $98.6^{\circ} \mathrm{C}$, what is my temperature in F? How about K?

Heat and Specific Heat

-E= m x SH x DT

-m is mass (in g)
-SH is Specific heat. The specific heat for
water is $1.00 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$
-DT is change in temperature

- How many calories are required to raise 30 grams of water from $25^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}$?

