The Atom Chapter 2

Dalton's Atomic Theory (1803)

- Elements are made up of atoms that are indivisible and indestructible.
- All atoms of an element have the same mass. No two different elements have the same mass.
- Compounds consist of small whole number ratios of elements.
- Elements are not changed during chemical reaction.

Models of the Atom

1903 Thomson – The plum pudding model

Rutherford's Alpha Scattering Experiment

http://micro.magnet.fsu.edu/electromag/java/rutherford/

The Results!

Rutherford explained this phenomenon with a revitalized model of the atom in which most of the mass was concentrated into a compact nucleus (holding all of the positive charge), with electrons occupying the bulk of the atom's space and orbiting the nucleus at a distance. With the atom being composed largely of empty space, it was then very easy to construct a scenario where most of the alpha particles passed through the foil, and only the ones that encountered a direct collision with a gold nucleus were deflected or scattered backwards.

Subatomic Particles

Particle	symbol	location	charge	mass
Electron	e-	orbital	-1	1/1836
Proton	p+	nucleus	+1	1
Neutron	n	nucleus	0	1

Describing Individual Atoms

Mass Number Symbol Charge

 $\underset{protons}{protons} Symbol^{protons-electrons}$

Example:

 $^{119}_{50}{\rm Sn}^{2+}$

Lets see if you have it!								
e blanks:								
neutrons	protons	electrons						
33	27	27						
46	35	36						
36	29	27						
	Lets see i e blanks: neutrons <u>33</u> <u>46</u> 36	Lets see if you have blanks: neutrons protons $\frac{33}{46}$ $\frac{27}{35}$ 36 29						

Chlorine (http://scidiv.bcc.ctc.edu/wv/0003-003b-0-isotopes.htm)

• Chlorine is 75% chlorine-35 and 25% chlorine-37. What is the average mass?

Wave Nature of Light

Wavelength – the distance light travels to complete one cycle. Frequency – the number of wave cycles in one second.

zone/bohr.html)

The electron as a wave

http://mooni.fccj.org/~ethall/quantum/quant.htm

- Einstein, "Light, a wave, can have particle like properties"
- De Brolie, "particles, like electrons, can have wavelike properties"
- Scrödinger, "Came up with an equation that describes an electron"

The outcome

- n, principle quantum number. Correlates with shell of Bohr model
- l, subshell. Correlates with type of orbital, s p d or f.
- ml, orientation. px, py or pz.
- s, spin. $\wedge \text{or } \mathbf{V}$

Energy Levels and Subshells

- Each energy level is divided into sublevels, often called subshells.
- Types of subshells: s, p, d, f
- Number of subshells in an energy level depends on the energy level.

E. Level	1	2	3	4
Subshell	S	s,p	s,p,d	s,p,d,f

Subshells and Orbitals

- Electrons exist in orbitals.
 - Most probable location for finding an electron.
- The number of orbitals depends on the subshell
- 2 electrons per orbital
- s orbitals come in groups of 1
- p orbitals come in groups of 3
- d orbitals come in groups of 5

S orbitals

• S orbitals are spherical

How does a 1s orbital differ from a 3s orbital?

p Orbitals

The first shell only has an s orbital The second shell has s& p orbitals The third shell has s, p d orbitals

Orbitals in the third shell

Electron Configurations (Shell-subshell notation) Subshell 4d³

Electron Configuration - V

An Easier Way

Electron Configuration - Al

Electron Configuration - Co

Electron Configuration - Sr

