Covalent compounds

Day6

Covalent compounds

- bonds between two non-metals.
- involves sharing electrons.
- electrons will exist in pairs.
- Atoms will share electrons to get 8 electrons in their outer shell.
- Bonding electrons: shared pairs of electrons.
- Lone pairs: unshared pairs of electrons.

Hydrogen

- Each begins with one electron.
- Needs two to get the NG config of He (2 e)

Visualizations of H₂

 The two atoms are bound together mainly due to the attraction of the positively charged nuclei f or the negatively charged electron cloud located between them

Fluorine

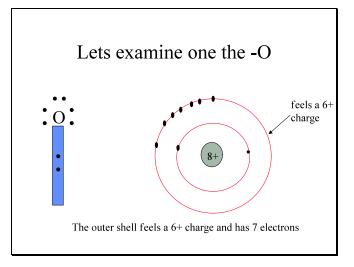
- Each F begins with 7 valence electrons.
- Needs to share one more with the other F.

Oxygen, O₂

- Each oxygen begins with 6 electrons.
- Needs to share woonore electrons.
- An example of a double bond.

Nitrogen, N₂

- Each nitrogen begins with 5 electrons.
- Must share three more electrons.
- An example of a thombond



Water, H₂O

- Each H has I e and needs to hare 1 more.
- O has 6 and needs to share 2 more

Carbonate, the Will-Nilly method

Formal Charge

- FC=Group# # of bonds e in lone pairs
- For that oxygen FC=6-1-6=-1
- Include the formal charge for every atom in a Lewis structure
- The sum of the individual formal charges equals the overall charge.

The computer method

- Find total valence electrons.
- create a framework using single bonds.
- Add lone pairs from the outside in to give atoms octets.
- Make multiple bonds if necessary (Minimizing formal charge)
- Add formal charge.

The central atom

- The first non-hydrogen atom is usually the central atom.
- Hydrogen is always terminal and so never can be the central atom.
- Carbon is always a central atom.
- There is often more than one central atom.
- If hydrogen is the first atom in the formula, it is usually acidic and attached to oxygen.

carbonate, the computer method

HCN, the computer method

Acetate, CH₃CO₂-

Shapes of molecules, VSEPR

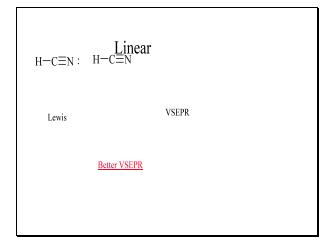
- electrons repel
- areas of electron density repel equally
 - Areas of electron density
 - single bond
 - double bond
 - triple bond
 - lone pair

In this class we are only concerned with the geometry around the central atom.

Types of shapes table

see table 3.5 in book	shape	bond angles
2	linear	180°
3	trigonal planar	120°
4	tetrahedral	109.5°

Tetrahedral


Better VSEPR diagram

Water is also tetrahedral

Better VSEPR

trigonal planar

Better VSEPR

Electronegativity Values of Selected Elements

Metallic Elements		Nonmetallic Elements				
Li (1.0)	Be (1.5)	H (2.1)	C (2.5)	N (3.0)	O (3.5)	F (4.0)
Na (1.0)	Mg (1.2)	Al (1.5)		P (2.1)	S (2.5)	C1 (3.0)
K (0.9)	Ca (1.0)	Sc (1.3)			Se (2.4)	Br (2.8)

Electronegativity

Difference	Bond type
0-0.4 (non-metals)	Non polar covalent
0.5 or more (non metals)	Polar Covalent
Metal + non-metal	Ionic

Naming simple covalent compounds

- 1. Name the first non-metal by it's elemental name.
- 2. Name the second nonmetal by its elemental name and an -ide ending.
- 3. Use the prefixes mono, di, tri, tetra, penta and hexa to denote number of atoms of that element in the molecule.
- 4. If mono is the first prefix it is understood and not written.
- •CO
- ${}^{\bullet}\mathrm{CO}_2$
- $\bullet P_2O_5$
- •NO
- $\bullet N_2O$
- $\bullet NO_2$