
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quantifying Chemical Reactions

\qquad

Microscopic world	Macroscopic world
amu	grams
atoms or molecules	moles
1 carbon atom $=12$ amu	1 mole of carbon $=12$ grams
1 water molecule $=18$ amu	1 mole of water $=18$ grams

The mole (6.02×10^{23})

- A macroscopic version of the molecule defined so we can use the periodic table for the macroscopic and microscopic world.
- Defined as the number of atoms in exactly 12.0 g of carbon- 12 isotope.
- This is number is called Avogadro's Number after the Italian physicist Amedeo Avogadro (1776-1856).

\qquad

Formula Weight

- The sum of the atomic weights of all the atoms in the molecular formula, whether ionic or molecular.
- Expressed in amu/molecule or grams/mole.
- Also called molecular weight, molar mass
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Formula Weight	
$\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{Ca}(\mathrm{OH})_{2}$	
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mole relationships in reactions

\qquad

How many moles of H_{2} are required to react with 2.8 moles of N_{2} according to the following equation?

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Weight relationships in reactions

- Stoichiometry - Study of the mass relationship between reactants and product in chemical reactions.
Always start with a balanced chemical equation!

1. Convert grams of A to moles of A. (Use FW)
2. Convert moles of A to moles of B. (Use Eq.)
3. Convert moles of B to grams of B. (Use FW)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Other Stoichiometry concepts
• Limiting reagent
- percent yield
• \% yield = (actual yield/theoretical yield) $\times 100$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

