Solutions

Day 16

Definitions

- A solution is a mixture in which one substance, called the solute is uniformly distributed in another substance called the solvent.
- The most common solvent is water.
- Examples: Kool Aid, vodka

Properties

- Homogeneous (uniform)
- Almost always transparent, clear.
- Does not separate on standing
- Cannot be separated by filtration.
- Can be separated by other physical means such as distillation.
- Differing concentrations can be made.

Solutions, Colloids, Suspensions

Property	Solutions	Colloids	Mixtures
example	saline soln.	milk	mud pie
Particle size	$.1-1 \mathrm{~nm}$	$1-1000 \mathrm{~nm}$	$>1000 \mathrm{~nm}$
Behavior to light	clear	opaque	opaque
Separated by filtration*	no	no	yes
settles on standing	no	no	yes
homogeneous	yes	borderline	no

*Using ordinary filter paper

Solubility

Solubility: The maximum amount of a substance that will dissolve in a given amount of solvent at a given temperature. Increasing temperature generally increases solubility.

- Saturated: At the maximum
- Unsaturated: Less than the maximum
- Supersaturated: more than the maximum.

Measuring concentrations

concentration $=\frac{\text { amount of solute }}{\text { amount of solution }}$

Amounts can be in grams, moles, liters, ml

W/W \%

$$
\mathrm{w} / \mathrm{w} \%=\frac{\text { grams of solute }}{\text { grams of solution }} \times 100 \%
$$

- A $10 \%(\mathrm{w} / \mathrm{w})$ solution of glucose means that there are 10 g of glucose in every 100 g of solution. (Parts per hundred)
- If a patient has to be fed 80.0 grams of glucose, how many ml of a 10% solution is needed?
What is the density of water?
What is the density of the soln?

Similar

$$
\mathbf{w} / \mathbf{v} \%=\frac{\text { grams of solute }}{\text { ml of solution }} \times 100 \%
$$

A $0.8 \%(\mathbf{w} / \mathrm{v})$ saline solution has 0.8 g of NaCl in every 100 ml .

$$
\mathrm{ppm}=\frac{\text { grams of solute }}{\text { grams of solution }} \times 1,000,000
$$

V/V \%

$$
\mathrm{v} / \mathrm{v} \%=\frac{\mathrm{ml} \text { of solute }}{\mathrm{ml} \text { of solution }} \times 100 \%
$$

- A $20 \%(\mathrm{v} / \mathrm{v} \%)$ has 20 ml of ethanol per 100 ml of solution.
- How do you make 2.00 L of a $20 \%(\mathrm{v} / \mathrm{v})$ ethanol solution?

Are volumes additive? 50 ml of acetone +50 ml of water $=\mathrm{ml}$

Molarity

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { Liters of solution }}
$$

- Units are moles/L given the abbreviation M.
- $\mathrm{M}^{*} \mathrm{~V}=$ moles
- for dilutions $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
 How do you make 2.00 L of a 0.660 M NaOH solution?

A dilution problem.

How do you make 2.00 L of a 0.800 M HCl solution of a 12.1 M stock solution?

Osmosis

Osmosis: The flow of a solvent through a semipermeable membrane into a solution of higher solute concentration.

More on osmosis

Osmotic pressure: The pressure that prevents the flow of additional water into a more concentrated solution.

- isotonic: same solute concentration
- hypotonic lower solute concentration, water flows into the cell
- hypertonic: higher solute concentration, water flows out of the cell.
1 M glucose vs $1 \mathrm{M} \mathrm{NaCl} \quad 1 \% \mathrm{LiF}$ vs $1 \% \mathrm{KI}$

Henry's Law

- The solubility of a gas in a liquid is directly proportional to the partial pressure of that gas above the liquid.
- Important in the carbonation of soda.
- The Bends.

