Acid and Base Equilibrium Chapter 8

Arrhenius

•Acid: A substance that make H^+ (H_3O^+) when dissolved in water.

•Base: A substance that makes OH- when dissolved in water.

•An acid/base reaction occurs when and H⁺ from an acid reacts with an OH⁻ from a base.

Acids

•Strong acids: Dissociate completely when dissolved in water.

-HCl, HNO₃
•Weak acids only dissociate a little bit.
-CH₃CO₂H

Base

Strong base: dissociates completely when dissolved in water. –NaOH, KOH
Weak base: Makes only a little bit of OH--NH3

1.00 M Acetic acid, a weak acid

 $CH_3COOH_{(aq)} + H_2O_{(l)} \leftrightarrows H_3O^+_{(aq)} + CH_3COO^-_{(aq)}$

$$\mathbf{K} = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\left[\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}_{2}^{-}\right]}{\left[\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}_{2}\mathbf{H}\right]}$$

- The K_a for this reaction is 1.8 x 10⁻⁵. Since little of the CH₃CO₂H dissociates, we can call it 1 M.
- For every H₃O⁺ there will be one CH₃COO⁻. Let these concentrations = x
- $x=[H^+] = [CH_3COO^-] = .00042$

Brønsted-Lowry Definition

- Acid: A proton donor.
- Base: A proton acceptor.
- An acid base reaction is one where there is a proton transfer.
- A broader definition than the Arrhenius definition.
- conjugate base: The acid without an H⁺.
- conjugate acid: The base with an H⁺.

Table 8.2

of the local	Acid		Conjugate Base		
Strong Acids	HI H_2SO_4 HCl HNO_8 H_3O' HSO_4^- H_3PO_4 CH_3COOH H_2CO_3 H_2S $H_2PO_4^-$ NH_4' C_6H_5OH HCO_3^- HPO_4^2 - HPO_4^2 - HPO_4^2 - HPO_4^2 - HPO_4 - HO_4 - HO_4 - HO_4 - HPO_4 - HO_4 - H	Hydroiodic acid Sulfuric acid Hydrochloric acid Nitric acid Hydronium ion Hydrogen sulfate ion Phosphoric acid Acetic acid Carbonic acid Hydrogen sulfide Dihydrogen phosphate ion Ammonium ion Phenol Bicarbonate ion Hydrogen phosphate ion Water Ethanol Ammonia	1^{-} HSO ₄ $^{-}$ Cl NO ₃ H ₂ O SO ₄ 2 H ₂ PO ₄ CH ₃ COO HCO ₈ $^{-}$ HS HPO ₄ 2 NH ₈ C ₆ H ₆ O ⁻ CO ₃ 3 PO ₄ $^{3-}$ OH $^{-}$ C ₂ H ₈ O NH ₂	Iodide ion Hydrogen sulfate ion Chloride ion Nitrate ion Water Sulfate ion Dihydrogen phosphate ion Acetate ion Bicarbonate ion Hydrogen sulfide ion Hydrogen phosphate ion Ammonia Phenoxide ion Carbonate ion Phosphate ion Hydroxide ion Ethoxide ion Amide ion	Weak Baser


```
\rm CH_3COOH + H_2O\leftrightarrows CH_3COO^- + H_3O^+
```

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

More on Acid Base reactions

•Water is amphoteric or amphiprotic, it can act as both an acid and a base.

•All acid base reactions are equilibrium reactions

•The equilibrium lies to the side of the weaker acid.

•When the equilibrium lies to the right, a lot of reaction occurs and there is often heat released or there is a color change....

•When the equilibrium lies to the left very little reaction occurs. (no heat...)

Water

```
•Water auto-ionizes
```

$$H_{2}O + H_{2}O \rightleftharpoons H_{3}O^{+} + OH^{-}$$

acid base [10⁻⁷M] [10⁻⁷M]
$$K = \frac{\left[H_{3}O^{+}\right]OH^{-}}{\left[H_{2}O\right]^{2}} = \left[H_{3}O^{+}\right]OH^{-} = 1 \times 10^{-14}$$

Acids and pH

^	0.1 M HCl	pure water	0.1 M NaOH
[H ⁺] or [H ₃ O ⁺]			
[OH-]			
рН			
рОН			
acid or basic			

The big six 1.[H⁺] [OH⁻]= 10⁻¹⁴ 2.pH = -log [H⁺] 3.pOH = -log [OH⁻] 4.[H⁺]=10⁻pH 5.[OH⁻]=10⁻pOH 6.pH + pOH = 14

The [H+] of 0.1 M NH₃

- The pH is 11.13. What is the [H+]?
- pH =-log [H+]
- [H+]=10-pH
- [H+]=10-11.13

Filling out a table

	$[\mathrm{H}^+]$	[OH ⁻]	pН	рОН
0.08 M HCl				
0.08 M Acetic Acid				

Buffer solution

A buffer solution keeps the pH approximately the same even upon the addition of a strong acid or strong base.

- Need a weak acid.
- Its conjugate base.
- Present in a large enough quantity to resist the pH changes.

CH₃CO₂H/CH₃CO₂⁻

- If you add an acid, H+, The base of the buffer reacts.
 - $H^{+} + CH_{3}CO_{2}^{-} \rightarrow CH_{3}CO_{2}H$
 - $H_3O^+ + CH_3CO_2^- \rightarrow H_2O + CH_3CO_2H$
- Of you add a base, OH-, the acid of the buffer system reacts.
 - $CH_3CO_2H + OH^- \rightarrow H_2O + CH_3CO_2^-$