Acid and Base Equilibrium Chapter 8

Arrhenius

- Acid: A substance that make $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$when dissolved in water.
-Base: A substance that makes OH^{-}when dissolved in water.
-An acid/base reaction occurs when and H^{+} from an acid reacts with an OH^{-}from a base.

Acids

- Strong acids: Dissociate completely when dissolved in water.
$-\mathrm{HCl}, \mathrm{HNO}_{3}$
-Weak acids only dissociate a little bit.
$-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$

Base

-Strong base: dissociates completely when dissolved in water.
$-\mathrm{NaOH}, \mathrm{KOH}$
-Weak base: Makes only a little bit of OH^{-} $-\mathrm{NH}_{3}$

1.00 M Acetic acid, a weak acid

$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}
$$

- The K_{a} for this reaction is 1.8×10^{-5}. Since little of the $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ dissociates, we can call it 1 M .
- For every $\mathrm{H}_{3} \mathrm{O}^{+}$there will be one $\mathrm{CH}_{3} \mathrm{COO}^{-}$. Let these concentrations $=\mathrm{x}$
- $\mathrm{x}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=.00042$

Brønsted-Lowry Definition

- Acid: A proton donor.
- Base: A proton acceptor.
- An acid base reaction is one where there is a proton transfer.
- A broader definition than the Arrhenius definition.
- conjugate base: The acid without an H^{+}.
- conjugate acid: The base with an H^{+}.

Table 8.2

TABLE 8.2 Some Acids and Their Conjugate Bases, in Decreasing Order of Acid Strength

	Acid		Conjugate Base		
Strong	HI	Hydroindic acid	1^{-}	Iodide ion	
Acids	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	HSO_{4}^{-}	Hydrogen sulfate ion	Bases
	HCl	Hydrochloric acid	Cl	Chloride ion	
	HNO_{3}	Nitric acid	NO_{2}	Nitrate ion	
	$\mathrm{H}_{3} \mathrm{O}$	Hydronium ion	$\mathrm{H}_{2} \mathrm{O}$	Water	
	HSO_{4}^{-}	Hydrogen sulfate ion	$\mathrm{SO}_{4}{ }^{2}$	Sulfate ion	
	$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	$\mathrm{H}_{2} \mathrm{PO}_{4}$	Dihydrogen phosphate ion	
	$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid	$\mathrm{CH}_{3} \mathrm{COO}$	Acetate ion	
	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid	HCO_{4}^{-}	Bicarbonate ion	
	$\mathrm{H}_{2} \mathrm{~S}$	Hydrogen sulfide	HS	Hydrogen sulfide ion	
	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Dihydrogen phosphate ion.	$\mathrm{HP}^{(2)}{ }_{4}{ }^{2}$	Hydrogen phosphate ion	
	$\mathrm{NH}_{4}{ }^{\prime}$	Ammonium ion	NH_{8}	Ammonia	
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	Phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$	Phenoxide ion	
	$\mathrm{HCO}_{3}{ }^{-}$	Bicarbonate ion	$\mathrm{CO}_{3}{ }^{\text {a }}$	Carbonate ion	
	$\mathrm{HPO}_{4}{ }^{2}$	Hydrogen phosphate ion	$\mathrm{PO}_{4}{ }^{\text {a }}$	Phosphate ion	
	$\mathrm{H}_{2} \mathrm{O}$	Water	OH^{-}	Hydroxide ion	
Weak	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	Ethoxide ion	
Acids	NH_{3}	Ammonia	NH_{2}	Amide ion	Bases

A standard acid/base reaction

Acid + Base $\leftrightarrows \mathrm{c}$. base $+\mathrm{c} . \mathrm{acid}$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}+\mathrm{OH}^{-}$

More on Acid Base reactions

-Water is amphoteric or amphiprotic, it can act as both an acid and a base.

- All acid base reactions are equilibrium reactions
-The equilibrium lies to the side of the weaker acid.
-When the equilibrium lies to the right, a lot of reaction occurs and there is often heat released or there is a color change....
-When the equilibrium lies to the left very little reaction occurs. (no heat...)

Water

-Water auto-ionizes

$$
\underset{\text { acid }}{\mathrm{H}_{2} \mathrm{O}}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}} \underset{\left[10^{-7} \mathrm{M}\right]}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\left[10^{-7} \mathrm{M}\right]}{\mathrm{OH}^{-}}
$$

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+} \llbracket \mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}=\left[\mathrm{H}_{3} \mathrm{O}^{+} \llbracket \mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

Acids and pH

	0.1 M HCl	pure water	0.1 M NaOH
$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$			
$\left[\mathrm{OH}^{-}\right]$			
pH			
pOH			
acid or basic			

The big six

1. $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10-14$
2. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
3. $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
4. $\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
5. $[\mathrm{OH}-]=10-\mathrm{pOH}$
6. $\mathrm{pH}+\mathrm{pOH}=14$

The [$\mathbf{H}+]$ of $0.1 \mathbf{M ~ N H}_{3}$

- The pH is 11.13 . What is the $[\mathrm{H}+]$?
- $\mathrm{pH}=-\log [\mathrm{H}+]$
- $[\mathrm{H}+]=10-\mathrm{pH}$
- $[\mathrm{H}+]=10-11.13$

Filling out a table

	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH
0.08 M HCl				
0.08 M Acetic Acid				

Buffer solution

A buffer solution keeps the pH approximately the same even upon the addition of a strong acid or strong base.

- Need a weak acid.
- Its conjugate base.
- Present in a large enough quantity to resist the pH changes.

$\mathbf{C H}_{3} \mathrm{CO}_{2} \mathbf{H} / \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$

- If you add an acid, H^{+}, The base of the buffer reacts.
$-\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$-\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
- Of you add a base, $\mathrm{OH}-$, the acid of the buffer system reacts.
$-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$

