Review Test 3

CHM1032C

1) Chemical equations
a) writing chemical equations
b) coefficients and balancing equations
2) Reaction Types
a) Double substitution or double displacement
i) formation of a solid, formation of a gas, formation of water Know how to use solubility rules but they will be provided on the test
b) combustion reactions
c) combination reactions
i) oxidation/reduction
d) single replacement reactions
i) oxidation/reduction
e) decomposition
3) Moles and molecules
a) Micro vs. the macroscopic world.
b) Formula wt (a conversion factor)
c) The mole \& Avogadro's number
4) Gas Laws
a) Kinetic Molecular Theory
b) Pressure (mm Hg , atm, torr)
c) Combined Gas Law
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
d) Ideal gas Law
$\mathrm{PV}=\mathrm{nRT}$
e) Dalton's law
5) Solids and Liquids
a) types of intermol. forces ionic. H-bonding, dipole-dipole, London dispersion
b) names of interconversions
c) boiling points

Prestest 3 CHM 1032

1. What are the products, include the phases($\mathrm{s}, \mathrm{g}, 1, \mathrm{aq}$) and balance the equation: (6 pts)

$$
\mathrm{CuSO}_{4}(\mathrm{aq})+\quad \ldots \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow
$$

2. What are the products, include the phases ($\mathrm{s}, \mathrm{g}, 1, \mathrm{aq}$) and balance the equation: (6 pts)

$$
\mathrm{Mg}_{(\mathrm{s})}+\quad \mathrm{CuSO}_{4(\mathrm{aq})} \rightarrow
$$

3. Consider the reaction:

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

How many grams of NH_{3} are produced from the reaction of $9.58 \mathrm{~g} \mathrm{of}_{\mathrm{H}}^{2}$?
(Assume hydrogen is the limiting reagent)

4 Please balance the following equation. (6 pts)

$$
\ldots \mathrm{C}_{5} \mathrm{H}_{10}{ }^{+} \ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

Problem 5. (8 pts)

How many moles of air gas are present in the lungs if they occupy a volume of 1.183 L at $37^{\circ} \mathrm{C}$ and 798 mmHg ?

Problem 6 (8 pts)

If a balloon containing 4.12 L of gas at $25^{\circ} \mathrm{C}$ is cooled to $-78^{\circ} \mathrm{C}$, what is the new volume?

