Solubility Rules

1. All compounds containing Na⁺, K⁺, or NH₄⁺ ions are soluble in water.

2. All nitrates (NO₃⁻) are soluble in water.

3. Most chlorides (Cl⁻), and sulfates (SO₄²⁻) are soluble. Some important exceptions are silver chloride (AgCl), barium sulfate (BaSO₄), and lead sulfate (PbSO₄) which are insoluble.

4. Most carbonates (CO_3^{2-}), phosphates (PO_4^{3-}), sulfides (S^{2-}), and hydroxides (OH^-) are insoluble in water. Important exceptions are those of Na⁺, K⁺, and NH4⁺, as well as barium hydroxide, Ba(OH_2).

PERIODIC TABLE OF THE ELEMENTS

1 H 1.0																	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.5	18 Ar 39.9
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.4	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 Át (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0	89 Ac† 227.0	104 Unq (261)	105 Unp (262)	106 Unh (263)	107 Uns (262)	108 Uno (265)	109 Une (267)			•	<u> </u>	<u> </u>	<u>.</u>			

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
t	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

						Cha	arges	of son	1e Coi	nmon	Mona	atomic	ions				
H 1+																	
Li 1+	Be 2+													N 3-	0 2-	F 1-	
Na 1+	Mg 2+											Al 3+				Cl 1-	
К 1+	Ca 2+	Sc 3+	Ti 3+ 4+	V 3+ 4+	Cr 2+ 3+	Mn 2+ 3+	Fe 2+ 3+	Co 2+ 3+	Ni 2+ 4+	Cu 1+ 2+	Zn 2+					Br 1-	
Rb 1+	Sr 2+								Pd 2+ 4+	Ag 1+	Cd 2+		Sn 2+ 4+			I 1-	
Cs 1+	Ba 2+								Pt 2+ 4+	Au 1+ 3+	Hg 2+ *		Pb 2+ 4+				
Fr 1+	Ra 2+																

Please note that many of the metals shown here can have more possibilities that I can show here. Vanadium, for example, can be 2+, 3+, 4+ or 5+. I have only shown the more common charges. *Mercury can be 1+ in the polyatomic ion Hg₂²⁺.

Prefix	Number of Carbon atoms	Prefix	Number of Carbon atoms
meth-	1	hex-	6
eth-	2	hept-	7
prop-	3	oct-	8
but-	4	non-	9
pent-	5	dec-	10

11.2 Prefixes used to show the presence of one to ten carbons in an unbranched chain.

Electronegativity Values of Selected Elements

Met	allic Eb	ements	Nonn	netallic	Eleme	nts
Li	Be	H	C	N	0	F
(1.0)	(1.5)	(2.1)	(2.5)	(3.0)	(3.5)	(4.0)
Na	Mg	Al		P	S	Cl
(1.0)	(1.2)	(1.5)		(2.1)	(2.5)	(3.0)
K (0.9)	Ca (1.0)	Sc (1.3)			Se (2.4)	Br (2.8)

Electronegativity	
Difference	Bond type
0-0.4 (non-metals) 0.5 or more (non metals) Metal + non-metal	Non polar covalent Polar Covalent Ionic

Equilibrium reactions $aA + bB \iff cC + dD$ $K = \frac{[C]^{q}[D]^{d}}{[A]^{a}[B]^{b}}$

Gas Laws

PV=nRT

$$\frac{\underline{P_1V_1}}{T_1} = \frac{\underline{P_2V_2}}{T_2}$$

 $K=273+^{\circ}C$ 760 mm Hg = 760 torr=1 atm R= 0.08206 L atm mol⁻¹K⁻¹

Avogadro's Number: 6.02 x 10²³

6.02×10^{23} molecules = 1 mole	
pH equ	lations
$[H_3O^+][OH^-]=1 \ge 10^{-14}$	pH + pOH= 14
$pH=-log[H_3O^+]$	$[H_3O^+] = 10^{-pH}$
$pOH = -log[OH^-]$	[OH ⁻]=10 ^{-pOH}

Solutions and Molarity

 $\frac{M = moles}{L} \qquad M \ge V = moles$

Dilutions $M_1V_1=M_2V_2$

TABLE 9.1 Some Acids and Their Conjugate Bases, in Decreasing Order of Acid Strength

Strong Acids

Acid		Conjugate Ba	ise	
HI	Hydroiodic acid	I.	Iodide ion	
H_2SO_4	Sulfuric acid	HSO ₄	Hydrogen sulfate ion	
HC1	Hydrochloric acid	Cl	Chloride ion	
HNO ₃	Nitric acid	NO ₃ -	Nitrate ion	
H_3O^+	Hydronium ion	H ₂ O	Water	
HSO ₄ ⁻	Hydrogen sulfate ion	SO_4^{2-}	Sulfate ion	
H_3PO_4	Phosphoric acid	H_2PO_4	Dihydrogen phosphate ion	
HF	Hydrofluoric acid	F ⁻	Fluoride Ion	
CH ₃ CO ₂ H	Acetic acid	CH ₃ CO ₂ ⁻	Acetate ion	
H_2CO_3	Carbonic acid	HC03	Bicarbonate ion	
H_2S	Hydrogen sulfide	HS ⁻	Hydrogen sulfide ion	
H ₂ PO ₄ ⁻	Dihydrogen phosphate ion	HPO_4^{2-}	Hydrogen phosphate ion	
$\mathrm{NH_4}^+$	Ammonium ion	NH ₃	Ammonia	
C ₆ H ₅ OH	Phenol	C ₆ H ₅ O ⁻	Phenoxide ion	
HCO ₃ -	Bicarbonate ion	CO_{3}^{2}	Carbonate ion	
HPO_4^{2-}	Hydrogen phosphate ion	PO_4^{3-}	Phosphate ion	
H ₂ O	Water	OH	Hydroxide ion	
C ₂ H ₅ OH	Ethanol	C ₂ H ₅ O	Ethoxide ion	

Strong Bases