Reactions Chapter 11

Chapter 11: Reactions

- A. Chemical Equations
- B. Balancing Reactions
- C. The Mole
- D. Formula Weight
- E. Reaction Diagrams
- F. Kinetics
- G. Chemical Equilibrium

Chemical Equations

Chemical change involves a reorganization of the atoms in one or more substances.

The Hindenburg Reaction

- Reactants are on left, products to the right.
- Arrow indicates the change

A chemical equation

$2 \operatorname{H}_2 + \operatorname{O}_2 \xrightarrow{} 2 \operatorname{H}_2 \operatorname{O}$

- Notice that the formula for the molecules is unchanged.
- To indicate that more than one molecule is required, use coefficients (shown in green).
- The equation is balanced.

The Rules

- Change only the coefficients to balance the chemical equation.
- Balance one element at a time.
- Continue to balance the other elements in the same manner.
- Adjust coefficients to the lowest whole number common multiple.
- Check your answers.

Example

$\mathbf{FeI}_2 + \mathbf{Cl}_2 \rightarrow \mathbf{FeCl}_3 + \mathbf{I}_2$

Balancing Combustion Reactions

(fuel + oxygen gives carbon dioxide and water)

- Balance carbon first
- Hydrogen second
- Oxygen last
- Multiply by 2 if you need to.

$\underline{\quad} C_3H_8 + \underline{\quad} O_2 \twoheadrightarrow \underline{\quad} CO_2 + \underline{\quad} H_2O$

More Balancing and Things to Avoid

 $\underline{\qquad} C_4H_{10} + \underline{\qquad} O_2 \rightarrow \underline{\qquad} CO_2 + \underline{\qquad} H_2O$

 $1 C_4 H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2 O_2$

 $2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$

- Coefficients should always have the lowest whole number ratio.
- Never Change the subscripts. 8 CO_2 is not the same as $C_8O_{16}.$

Quantifying Chemical Reactions

Microscopic world	Macroscopic world
amu	grams
atoms or molecules	moles
1 carbon atom = 12 amu	1 mole of carbon = 12 grams
1 water molecule = 18 amu	1 mole of water = 18 grams

The mole (6.02 x 10^{23})

- A macroscopic version of the molecule defined so we can use the periodic table for the macroscopic and microscopic world.
- Defined as the number of atoms in exactly 12.0 g of carbon-12 isotope.
- This is number is called Avogadro's number after the Italian physicist Amedeo Avogadro (1776-1856).

Formula Weight

- The sum of the atomic weights of all the atoms in the molecular formula, whether ionic or molecular.
- Expressed in amu/molecule or grams/mole.
- Also called molecular weight, molar mass Formula Weight

 H_2O (2 x 1.0) + (1 x 16.0) = 18.0 g/mole $Ca(OH)_2$ (1 x 40.1) + (2 x 1.0) + (2 x 16.0) = 74.1 g/mole C_3H_8 (3 x 12.0) + (8 x 1.0) = 44.0 g/mole A Chemical Reaction What is happening in a reaction?

Three things are required for a reaction to occur:

- Molecules must collide.
- They must collide with enough energy to break old bonds so new ones can form.
- They must collide in the correct orientation.

Energy Diagram for exothermic reaction

Energy Diagram for endothermic reaction

Kinetics (rate of reaction)

Three ways to increase the rate of a reaction

- Increase Concentration
 - Increases number of collisions
- Increase Temperature
 - Increases collisions & collisions that have enough energy to break old bonds
- Use a catalyst.
 - Lowers energy barrier (Activation energy)

A Catalyst

• A compound that increases the rate of a reaction without itself undergoing a permanent change at the end of the process.

Chemical Equilibrium

- Most reactions are reversible, some are not.
- Reversible reactions are shown with a double arrow.
- An equilibrium condition exists when the rate of the forward reaction equals the rate of the reverse reaction.
- Equilibrium: The exact balancing of two processes that are opposite each other.
- Chemical equilibrium: A dynamic state where the concentrations of all reactants remain constant.

Concentrations as a solution reaches equilibrium

Homework

- 1. Balance the following equation: $C_5H_{12} + O_2 CO_2 + H_2O_2$. Balance the following equation: $C_6H_{14} + O_2 CO_2 + H_2O_2$. 3. FeCl₃ + NaOH -> NaCl + Fe(OH)₃
- 4. The combustion of a hydrocarbon fuel does not produce
 - (A) H_2
 - (B) H₂O
 - (C) CO_2

Answers 1) 1,8,5,6 2) 2, 19, 12, 14 3) 1, 3, 3, 1 4) A