Bonus Equations

$$t = \frac{V_f - V_i}{a}$$
 or $t = \frac{V_f - V_i}{g}$ where g is -9.8 m/s²

 $v = v_i + gt$ where g is -9.8 m/s² or $v = v_i - gt$ where g is -9.8 m/s²

Centripetal force: $F_c = \frac{mv^2}{r}$

Conservation of momentum: $v_1=m_2v_2/m_1$

PE=mgh where $g= 9.8 \text{ m/s}^2$

More Boyle's Law: $\frac{P_1}{P_2} = \frac{V_2}{V_1}$

Equations for Midterm

Chapter 2: velocity:

$$v = \frac{d}{t}$$

acceleration:

$$a = \frac{v_f - v_i}{t}$$

Acceleration due to gravity (or g)

is equal to -9.80 m/s^2 .

Force:

F = m a

Force due to gravity:

$$F = \frac{Gm_1m_2}{d^2}$$

Chapter 3

Work

W = force × distance or
$$W = F \times d$$
 or $W = F_{par} \times d$

W = mgh wher e m is mass in kg, g is 9.8 m/s^2 and h is the height of the object.

Power

power =
$$\frac{\text{work}}{\text{time}}$$
 or $P = \frac{W}{t}$

Energy

$$KE = \frac{1}{2} mv^2$$

Momentum

$$p = m v$$

where p is momentum, m is mass in kg, and v is velocity in m/s

Chapter 4

Temperature

$$F = \frac{9}{5}C + 32$$
 and $C = \frac{5}{9}(F - 32)$ and $K = C + 273$

heating and cooling

when temperature is changing

$$E = m \times SH \times \Delta T$$
specific heat of water =
$$\frac{4.184 \text{ kJ}}{\text{kg }^{\circ}\text{C}}$$

phase change solid to liquid

Energy = $m \times L_f$

heat of fusion (L_f) for H₂O is 333 kJ/kg at 0°C

phase change liquid to gas

Energy = $m \times L_f$

heat of vaporization for H₂O is 2260 kJ/kg at 100°C

Density

$$Density = \frac{Mass}{Volume} \text{ or } D = \frac{M}{V}$$

Pressure

$$P = \frac{F}{A}$$

Combined ideal gas law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \text{ and PV=nRT } remember T \text{ in Kelvin}$$

Chapter 5

Coulombs Law

$$F = K \frac{Q_1 Q_2}{R^2} = 9x10^9 \frac{Q_1 Q_2}{R^2}$$

Ohm's Law

$$I = \frac{V}{R}$$
 or $V = I \cdot R$

I is current in amps(A)

V is voltage in volts (V)

R is resistance in ohms (Ω)

power

P is in Watts (W)

Transformers

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1}$$

Chapter 6

 $v=f\lambda$ The speed of sound is 3 x 10⁸ m/s Where v is speed, f is frequency and lambda is wavelength.

T=1/f where T is the period.