Ionic Compounds Chapter 9

Chapter 6: Ionic Compounds

- A. Octet Rule
- B. Ionic Bonding
- C. Formulas
- D. Naming Ionic compounds

Octet rule

- **Octet rule:** Atoms in a compound will lose, gain or share electrons in order to achieve a stable noble gas configuration.
- It is the electrons in the outer shell that participate in these changes to create bonds

Valence electrons

- The valence electrons of an atom are defined as the electrons in the outermost shell of the uncharged atom.
- The number of valence electrons of an uncharged atom is equal to the group number for main group elements.

Dot structures

- In Lewis dot structures, the valence electrons are represented by dots.
- Lewis dot structures play a more important role in covalent bonding than ionic bonding.
- Sodium, in group I has 1 valence electron
- Carbon in group IV has 4 valence electrons.

Dots for common elements

Types of bonding

- metal + non-metal leads to ionic bonding.
 - the metal will lose electrons to become positively charged.
 - the non-metal will gain electrons to become negatively charged.
 - the ionic compound is heldtogether by the electrostatic attraction between the positive and negative charges.

Salt and Lewis Structures

• The sodium and chlorine combine in a 1:1 ratio.

Na · ___- Na⁺ ::Cl: ___- :Cl:

The Na⁺ and the Cl⁻ are attracted to each other.

																	_
Н																	
1+																	
1-																	
Li	Be													Ν	0	F	
1+	2+													3-	2-	1-	
Na	Mg											Al		Р	S	Cl	
1+	2+											3+		3-	2-	1-	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn					Br	
1+	2+	3+	3+	3+	2+	2+	2+	2+	2+	1+	2+					1-	
			4+	4+	3+	3+	3+	3+	4+	2+							
Rb	Sr								Pd	Ag	Cd		Sn			Ι	
1+	2+								2+	1+	2+		2+			1-	
									4+				4+				
Cs	Ba								Pt	Au	Hg		Pb				
1+	2+								2+	1+	2+		2+				
									4+	3+	*		4+				
Fr	Ra																
1+	2+																

Charges of some Common Monatomic ions

Does it have to be a 1:1 ratio? No!

- All ionic compounds must have no overall charge so positive charges must equal negative charges.
- Example sodium oxide: Na₂O

The Switcheroo Rule

Note that the cation is written first and the anion second.

A Caveat to the Switcheroo rule

- If you can divide by an integer greater than one, you must do so.
- Mg^{2+} and O^2 form MgO not Mg_2O_2

Polyatomic ions

- Polyatomic ions are groups of covalently bound atoms that act like a single ion.
- Example: nitrate NO₃⁻ combines with Mg²⁺ to form Mg(NO₃)₂.
- Note the use of () to identify that it is 2 nitrates.
- Pb^{3+} and OH^{-} form: $Pb(OH)_{3}$

Ten polyatomic ions

Formula	Name
NH_4^+	Ammonium
OH ⁻	Hydroxide
NO ₃ -	Nitrate

CH ₃ CO ₂ ⁻	Acetate
CN ⁻	Cyanide
CIO ₃ -	Chlorate
CO ₃ ²⁻	Carbonate
HCO₃ ⁻	Bicarbonate
SO4 ²⁻	Sulfate
PO ₄ ³⁻	Phosphate

Rules for naming simple ionic compounds.

1. Name the metal by its elemental name.

2. Name the nonmetal by its elemental name and an -ide ending.

3. Name metals that can have different oxidation states using roman numerals to indicate positive charge. Example Fe²⁺ is Iron(II)

(See table "Charges of some Common Monatomicions" to determine which metals can have more than one positive charge.) 4. Name polyatomic ions by their names.

Ionic Nomenclature Practice

The Rule: Name the cation Name the anion

- CoCl₂ Cobalt(II) chloride
- $Sn(ClO_3)_2$ Tin(II) chlorate
- K₂S Potassium sulfide
- NH₄C₂H₃O₂ Ammonium acetate
- Mg(NO₃)₂ Magnesium nitrate
- AgI Silver iodide

More Practice On the Web

- Nomenclature Activity
- <u>game</u>
- <u>Worksheet</u>
- More Worksheets

Homework

- 1) An element that can form an ionic compound with oxygen is
 - a) hydrogen
 - b) carbon
 - c) sulfur
 - d) iron
- 2) The formula for magnesium hydroxide is
 - a) MgOH
 - b) Mg_2OH
 - c) $MgOH_2$
 - d) $Mg(OH)_2$
- 3) The name of the compound Ca_3N_2 is
 - a) calcium nitride
 - b) calcium nitrate
 - c) calcium nitrite
 - d) tricalcium nitrite
- 4) The number of atoms in $(NH_4)_3PO_4$ is
 - a) 10
 - b) 14
 - c) 18
 - d) 20
- 5) What is the name of the compound $Ni(NQ_3)_2$?
- 6) What is the formula for Iron(III)oxide?

Answers: 1) d 2) d 3) a 4) d 5) nickel(II)nitrate 6) Fe₂O₃ or Fe2O3 on the test