Charges of some Common Monatomic ions | | | | | | | Ciiu | Ses | | | OIIIII | OH IV | Ciiut | OIIII | | , | | | |----------|---------------|----------|----------|---------|-------------|-------|-------|------------|----------|----------|---------|-------|----------|----|----|----------|--| | Н | | | | | | | | | | | | | | | | | | | 1+
1- | | | | | | | | | | | | | | | | | | | Li | Be | | | | | | | | | | | | | N | 0 | F | | | 1+ | 2+ | | | | | | | | | | | | | 3- | 2- | 1- | Na | Mg | | | | | | | | | | | Al | | | | Cl | | | 1+ | 2+ | | | | | | | | | | | 3+ | | | | 1- | | | TZ. | C - | C - | Tr: | 17 | C :: | 14 | 17. | C - | NT: | C | 7 | | | | | D., | | | K
1+ | Ca 2+ | Sc
3+ | Ti
3+ | V
3+ | Cr
2+ | Mn 2+ | Fe 2+ | Co
2+ | Ni
2+ | Cu
1+ | Zn 2+ | | | | | Br
1- | | | 11 | 21 | 31 | 4+ | 4+ | 3+ | 3+ | 3+ | 3+ | 4+ | 2+ | 21 | | | | | 1- | | | Rb | Sr | | | | | | | | Pd | Ag | Cd | | Sn | | | I | | | 1+ | 2+ | | | | | | | | 2+ | 1+ | 2+ | | 2+ | | | 1- | | | | | | | | | | | | 4+ | | | | 4+ | | | | | | Cs | Ba | | | | | | | | Pt | Au | Hg | | Pb | | | | | | 1+ | 2+ | | | | | | | | 2+
4+ | 1+
3+ | 2+
* | | 2+
4+ | | | | | | En | Da | | | | | | | | | | -•- | | | | | | | | Fr
1+ | R a 2+ | | | | | | | | | | | | | | | | | | 1 + | 2.7 | Please note that many of the metals shown here can have more possibilities that I can show here. Vanadium, for example, can be 2+, 3+, 4+ or 5+. I have only shown the more common charges. **Table 11.2** Prefixes used to show the presence of one to ten carbons in an unbranched chain. | Formula | name | Formula | name | |---------------------------------|-----------|---------------------|-------------| | $\mathrm{NH_4}^+$ | Ammonium | SO_4^{2-} | Sulfate | | OH ⁻ | Hydroxide | CrO_4^{2-} | Chromate | | NO_3 | Nitrate | PO_4^{3-} | Phosphate | | CH ₃ CO ₂ | Acetate | ClO ₃ | Chlorate | | CN⁻ | Cyanide | SiO_4^{2-} | silicate | | CO_3^{2-} | Carbonate | HCO ₃ | bicarbonate | ## Rules for naming simple ionic compounds. - 1. Name the metal by its elemental name. - Name the nonmetal by its elemental name and an -ide ending. - Metals that can have different oxidation states (charges) use roman numerals in their names to indicate their specific positive charge. Example Fe²⁺ is Iron(II) (See following page to determine which metals can have more than one positive charge.) 4. Name polyatomic ions by their names. ## Rules for naming binary covalent compounds: - 1) Name the first nonmetal by its elemental name. - 2) Name the second nonmetal by its elemental name and an -ide ending. - 3) Use the prefixes mono, di, tri, tetra, penta or hexa to indicate the number of atoms of that element in the molecule. - 4) If mono is the prefix on the first atom, it is understood and not written. **Gas Laws** PV=nRT $K=273+^{\circ}C$ 101.325 kPa=1.01325 bar=1 atm R = 0.08206 L atm $mol^{-1}K^{-1}$ $$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$ ^{*}Mercury can be 1+ in the polyatomic ion Hg_2^{2+} .