Charges of some Common Monatomic ions

						Ciiu	Ses			OIIIII	OH IV	Ciiut	OIIII		,		
Н																	
1+ 1-																	
Li	Be													N	0	F	
1+	2+													3-	2-	1-	
Na	Mg											Al				Cl	
1+	2+											3+				1-	
TZ.	C -	C -	Tr:	17	C ::	14	17.	C -	NT:	C	7					D.,	
K 1+	Ca 2+	Sc 3+	Ti 3+	V 3+	Cr 2+	Mn 2+	Fe 2+	Co 2+	Ni 2+	Cu 1+	Zn 2+					Br 1-	
11	21	31	4+	4+	3+	3+	3+	3+	4+	2+	21					1-	
Rb	Sr								Pd	Ag	Cd		Sn			I	
1+	2+								2+	1+	2+		2+			1-	
									4+				4+				
Cs	Ba								Pt	Au	Hg		Pb				
1+	2+								2+ 4+	1+ 3+	2+ *		2+ 4+				
En	Da										-•-						
Fr 1+	R a 2+																
1 +	2.7																

Please note that many of the metals shown here can have more possibilities that I can show here. Vanadium, for example, can be 2+, 3+, 4+ or 5+. I have only shown the more common charges.

Table 11.2 Prefixes used to show the presence of one to ten carbons in an unbranched chain.

Formula	name	Formula	name
$\mathrm{NH_4}^+$	Ammonium	SO_4^{2-}	Sulfate
OH ⁻	Hydroxide	CrO_4^{2-}	Chromate
NO_3	Nitrate	PO_4^{3-}	Phosphate
CH ₃ CO ₂	Acetate	ClO ₃	Chlorate
CN⁻	Cyanide	SiO_4^{2-}	silicate
CO_3^{2-}	Carbonate	HCO ₃	bicarbonate

Rules for naming simple ionic compounds.

- 1. Name the metal by its elemental name.
- Name the nonmetal by its elemental name and an -ide ending.
- Metals that can have different oxidation states (charges) use roman numerals in their names to indicate their specific positive charge. Example Fe²⁺ is Iron(II)

(See following page to determine which metals can have more than one positive charge.)

4. Name polyatomic ions by their names.

Rules for naming binary covalent compounds:

- 1) Name the first nonmetal by its elemental name.
- 2) Name the second nonmetal by its elemental name and an -ide ending.
- 3) Use the prefixes mono, di, tri, tetra, penta or hexa to indicate the number of atoms of that element in the molecule.
- 4) If mono is the prefix on the first atom, it is understood and not written.

Gas Laws

PV=nRT

 $K=273+^{\circ}C$

101.325 kPa=1.01325 bar=1 atm R = 0.08206 L atm $mol^{-1}K^{-1}$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

^{*}Mercury can be 1+ in the polyatomic ion Hg_2^{2+} .