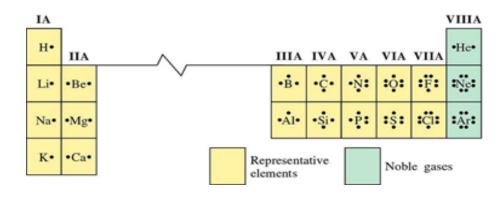
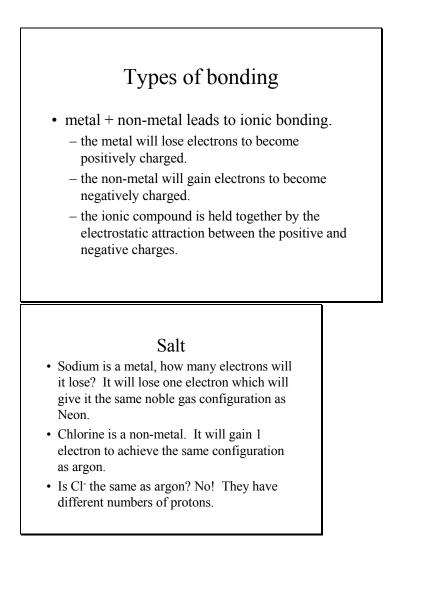
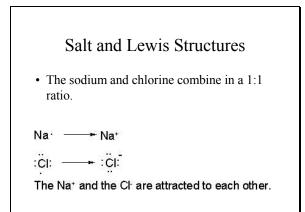
Octet rule

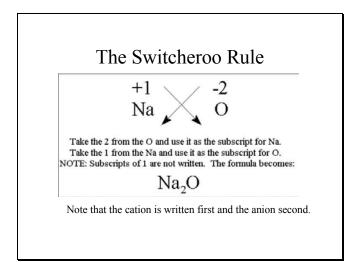

- Octet rule: Atoms in a compound will lose, gain or share electrons in order to achieve a stable noble gas configuration. (memorize this rule)
- It is the electrons in the outer shell that participate in these changes to create bonds.


Valence electrons


- The valence electrons of an atom are defined as the electrons in the outermost shell of the uncharged atom.
- The number of valence electrons of an uncharged atom is equal to the group number for main group elements.

Dot structures

- In Lewis dot structures, the valence electrons are represented by dots.
- Lewis dor strucures play a more important role in covalent bonding than ionic bonding.
- Sodium, in group I has 1 valence electron
- Carbon in group IV has 4 valence electrons.


	Charges of some Common Monatomic ions																
H 1+ 1-																	
Li 1+	Be 2+													N 3-	0 2-	F 1-	
Na 1+	Mg 2+											Al 3+		Р 3-	S 2-	Cl 1-	
K 1+	Ca 2+	Sc 3+	Ti 3+ 4+	V 3+ 4+	Cr 2+ 3+	Mn 2+ 3+	Fe 2+ 3+	Co 2+ 3+	Ni 2+ 4+	Cu 1+ 2+	Zn 2+					Br 1-	
Rb 1+	Sr 2+								Pd 2+ 4+	Ag 1+	Cd 2+		Sn 2+ 4+			I 1-	
Cs 1+	Ba 2+								Pt 2+ 4+	Au 1+ 3+	Hg 2+ *		Pb 2+ 4+				
Fr 1+	Ra 2+																

Does it have to be a 1:1 ratio?

- All ionic compounds must have no overall charge so positive charges must equal negative charges.
- Example sodium oxide: Na₂O

Na

3

A Caveat to the Switcheroo rule

- If you can divide by an integer greater than one, you must do so.
- Mg^{2+} and O^{2-} form MgO not Mg_2O_2

Polyatomic ions

- Polyatomic ions are groups of covalently bound atoms that act like a single ion.
- Example: nitrate NO₃⁻ combines with Mg²⁺ to form Mg(NO₃)₂.
- Note the use of () to identify that it is 2 nitrates.
- Pb³⁺ and OH⁻ form:

Memorize t	hese ten polyatom ions	ic
Formula	Name	
$\mathrm{NH_4}^+$	Ammonium	
ОН	Hydroxide	
NO ₃	Nitrate	
CH ₃ CO ₂	Acetate	
CN ⁻	Cyanide	
ClO ₃	Chlorate	
CO_3^{2-}	Carbonate	
HCO ₃	Bicarbonate	
SO_4^2	Sulfate	
PO4 ³⁻	Phosphate	

Rules for naming simple ionic compounds.

- 1. Name the metal by its elemental name.
- 2. Name the nonmetal by its elemental name and an ide ending.
- *3*. Name metals that can have different oxidation states using roman numerals to indicate positive charge. Example Fe²⁺ is Iron(II) (See table "Charges of some Common Monatomic ions" to determine which metals can have more than one positive charge.)
- 4. Name polyatomic ions by their names.

Practice

- CoCl₂
- $Sn(ClO_3)_2$ •
- K_2S •
- NH₄C₂H₃O₂
- $Mg(NO_3)_2$ •
- AgI

http://www.shodor.org/UNChem/basic/nomen/polycalc.html http://www.quia.com/jg/65800.html http://web.fccj.org/~ksanchez/1032/wksheet/nomen.htm http://dbhs.wvusd.k12.ca.us/webdocs/Nomenclature/Nomenclature.html